Received: March 5, 1981

PERFLUORO-n-PROPYLBROMINE(V) TETRAFLUORIDE

MOHAMMAD H. HABIBI and LEWIS C. SAMS

Department of Chemistry, The Texas Woman's University, Denton, Texas 76204 (U.S.A.)

SUMMARY

Perfluoro- \underline{n} -propylbromine(V) tetrafluoride has been prepared by fluorination of perfluoro- \underline{n} -propyl bromide at O°C with elemental fluorine. It has been characterized by 19 F-NMR, mass spectroscopy and elemental analysis.

INTRODUCTION

The synthesis of several perfluoroalkyliodine(V) tetrafluorides have been reported. These compounds were prepared by fluorination of perfluoroalkyl iodide with elemental fluorine [1,3], C1F₃ [2,3] and BrF₃ [3]. The preparation of pentafluorophenylbromine(V) tetrafluoride has been reported [4], but no report of perfluoroalkylbromine(V) tetrafluorides has been found.

This paper reports the preparation and characterization of perfluoro-n-propylbromine(V) tetrafluoride.

RESULTS AND DISCUSSION

Perfluoro-n-propylbromine(V) tetrafluoride was synthesized by allowing perfluoro-n-propyl bromide and elemental fluorine to react in a Monel cylinder at O°C for 15 hours. The reaction products were dissolved in perfluoro-n-hexane and a colorless liquid was isolated from the reddish-brown solution by G.C. This colorless product was identified as perfluoro-n-propyl-bromine(V) tetrafluoride on the basis of elemental analysis, mass spectra, 19 F-NMR and its ability to oxidize four equivalents of KI per mole.

A comparison of the NMR spectra of $n-C_3F_7Br$ and $n-C_3F_7BrF_4$ is given in Table I. The integration of the +141.8 ppm signal is consistent with four fluorines in the same magnetic environment, similar to the equatorial fluorines of BrF_5 . The R_F chemical shifts are as expected in comparison with perfluoro-n-propyl bromide

The mass spectrum,detailed in Table II, consists of molecular ions at m/e 324 and 326 and expected fragment ions. The expected isotope patterns (1:1) for $^{79}\mathrm{Br}$ and $^{81}\mathrm{Br}$ were observed and the peak at m/e 169 was assigned to $\mathrm{C_3F_7}^+$ as the base peak.

The liquid phase infrared spectrum consists of absorption band at 1340(s), 1250(vs), 1145(s), 1080(s), 910(w), 710(m), 685(vs), 665(s), 640(m), 620(m), 550(m) and 475(s) cm $^{-1}$. IR spectra of $^{\rm C}_3{}^{\rm F}_7{}^{\rm BrF}_4$ contained bands comparable to those of the $^{\rm C}_3{}^{\rm F}_7$ group [5] and a strong band at 685 cm $^{-1}$ which is comparable to the 683 cm $^{-1}$ band of $^{\rm BrF}_5$ [6].

Perfluoro- \underline{n} -propylbromine(V) tetrafluoride decomposes slowly at room temperature in contact with air (decomposition was detectable after 30 minutes). Under dry helium at -30° C the compound was stable for a month.

Perfluoro- \underline{n} -propylbromine(V) tetrafluoride hydrolyzes and NMR analysis of the hydrolysis products showed that fluorines attached to bromine in $C_3F_7BrF_4$ were liberated.

EXPERIMENTAL

Perfluoro-n-propyl bromide was purchased from PCR, Incorporated, and used without further purification. Elemental fluorine was purchased from Air Products, Incorporated, and passed through a NaF trap before use.

A vacuum manifold was used to condense 10 mmoles of perfluoron-propyl bromide and 20 mmoles of elemental fluorine into a previously evacuated Monel reactor. The 0.304 liter Monel reactor was equipped with a Monel valve with 'Teflon' packing.

At the completion of the reaction period, perfluoro- \underline{n} -hexane was vacuum distilled into the reactor to dissolve the products. Dry helium gas was allowed to flow into the reactor and the products were transferred into a helium flushed sample holder through a septum. Moisture was rigorously excluded in all handling of the sample. The product, $C_3F_7BrF_4$ was isolated by

TABLE I

 $J(F_1F_2)$ 32.0 $J(F_1F_3)$ 11.8 $J(F_2F_3)$ 1.2 Others** Coupling Constants (Hz) J(FBrCF) 0 The 19F-NMR spectra of perfluoro-n-propylbromine(V) tetrafluoride 32.0 +141.8 BrF4 CF₃ CF₂ CF₂ n-C₃F₇Br -80.0 -121.8 -58.6 $n-C_3F_7BrF_4$ -80.1 -123.1 -63.2 $\tilde{\mathrm{CF}}_2$ Compound

* From $\mathrm{CCl}_3\mathrm{F}$ as internal references, upfield is negative to $\mathrm{CCl}_3\mathrm{F}$. ** $^{19}{\rm F}$ nuclei in ${\rm C_3F_7}$ numbered from the alpha-position.

m/e	Relative Abundance	Assignment	m/e	Relative Abundance	Assignment
326	30	C ₃ BrF ₁₁ +	286	6	C ₃ BrF ₉ ⁺
324	30	C3BrF11+	257	19	C2BrF8+
307	23	C3BrF10+	255	19	C2BrF8+
305	23	C3BrF10+	169	100	c ₃ F ₇ ⁺
288	6	C ₃ BrF ₉ +	69	70	CF ₃ ⁺

trapping the appropriate peak from a Varian 90-P3 gas chromatograph equipped with a 3/8 inch x 20 foot column packed with 30% SE-30 on Chromsorb P. The column temperature was 80° C and the rate of helium flow was 80 ml/min.

Analysis: Found: C, 10.58; F, 64.14; Br, 24.05; $C_3F_7BrF_4$ requires C, 11.07; F, 64.30; Br, 24.61.

The ¹⁹F-NMR spectra were obtained on a Varian Model EM-390 spectrometer operating at 84.67 MHz using CFCl₃ as an internal reference. The mass spectrum was determined with a Consolidated Electrodynamics Corporation Model 21-104 mass spectrometer. IR spectra were recorded with a Perkin-Elmer Model 225 infrared spectrophotometer using a 0.1 mm liquid cell fitted with polyethylene windows.

REFERENCES

- 1 D. Naumann, M. Schmeisser and L. Deneken, J. Inorg. Nucl. Chem. Supplement (1976) 13.
- 2 G. Oates and J.M. Winfield, J. Chem Soc., Dalton (1974) 119.
- 3 C.S. Rondestvedt, Jr., J. Am. Chem. Soc., 91 (1969) 3054.
- 4 J.A. Obaleye and L.C. Sams, Inorg. Nucl. Chem. Letters, $\underline{16}$ (1980) 343.
- 5 J.K. Brown and K.J. Morgan Adv. Fluorine Chem. 4 (1965) 253.
- 6 G.M. Begun and W.M. Fletcher, J. Chem. Phys., 42 (1965) 2236.